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TARGET PROBLEM

ELECTRIC FIELD

@

MAGNETIC FIELD

4

Magnetic monopoles

do not exist in nature.

= How can we express this
information for E and B
using the mathematical formalism?
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TARGET PROBLEM

Let's consider some ELECTRIC CHARGES and two closed surfaces, S; and S,

S, does not contain any charge.

S, do contain a charge.

It has no sources and no sinks:
no field lines destroyed and
no field lines created inside S1

IE-d§¢O
Sy
~ < Q
.dS == uass’s law
_!E S . Guass's |

We want find the differential form of the Guass’s law.

(i.e. to express the Guass’s law without using integrals)

e to introduce the divergence of a vector field A, div A

e the Gauss’s theorem ”,K.ds_zjﬂdivﬂdv
S \

It has a sink. Field lines are destroyed inside S2

(see the 6t week of this
course for details or
“Teoretisk elektroteknik”)



THE DIVERGENCE (DIVERGENSEN)

In cartesian coordinates, the divergence of a vector field A is:

DEFINITION divA = A, + A, + OA, (1)
OX 0z

It is a measure of how much the field diverges (or converges) from (to) a point.

EXAMPLE: B
» Assume that A is the velocity field of a gas. )
@ .
* |If heated, the gas will expand creating 099’
e g oy 8 o _
a velocity field that will diverge. ° 0,9 o J/
— @ _ @,
» The divergence of A in the heating point will be positive 0 No % 5a .,:) °,
9 15 : r [+
* If cooled, the gas will contract creating o’ ° ;;.a :..::q L
. . . . - C R = R 2
a veIogty field tha.t will converge on the cooling position. o :wﬁ%:y“d; 5 ::a_>
The divergence will be negative @ o “ew Bigs ?
. e . ° 9 g@«u‘:’w;; 4 390 9
* The heating position is a source of the velocity field and ° % @ °Tag o,
the cooling position is a sink of the velocity / 9o s N \
@ ¥ e @
PN @

The divergence is a measurement of sources or sinks
(this will be more clear using the Guass’s theorem)



THE GAUSS’s THEOREM
j j A-dS = j j j divAdV 2
V

S

where S is a closed surface that forms the boundary of the volume V
and A is a continuously differentiable vector field defined on V.

Z:fl(X,y)

dxdy = dS,h, -é =dS, -€,
a Y >p dxdy = —dS,i, -6, = —d5, -8,

v




THE GAUSS’s THEOREM

PROOF

(s - m[@’* A, aAzjdxdydz_

jya—i*dxdydz +Iy%dxdydz +_[\_/U%dxdydz

Let's calculate the last term:

f,(x,y)

7 % ez - H xdy [z =[[[A 0y, L00Y) - A (x )iy -

f1(x y) Sp
dxdy is the projection on S, of the small element surfaces on dS; and dS,.

Therefore: dxdy =—-€,-A,dS, =€, -11,dS,

z

= [[ A (Y, £, )8, - ,0S, +[[ A (%, ¥, f,(x ), -idS, = [[ Ag, - fids

Which means: ”I 8AZ dv = ” Azéz -NdS (3)



THE GAUSS’s THEOREM

PROOF
In the same way we get:
([ gy = [ A8 -AdS (4)
.\./. ax .g
«or O .
idV = || A, -ndS (5)
\Y S

Adding together equations (3), (4) and (5) we finally obtain:

s 0 car O 5
_UIdIVAdV = ya—ixdxdydz +.H%dxdydz +_Uja—pz‘zdxdydz =

\Y

([ A8, -fds + [[ A8, -fds + [[ Ag, -fids = [[ A-dS

S S




Rearrange in logic order the steps to prove the Gauss’s theorem

- Add all the three terms together in order to obtain the flux of A.
- Write down the volume integral of divA

- Consider the projection of the surface element on the xy plane, it will be dxdy. The
projection will identify a infinitesimal surface element (dS,) on the lower surface.

- Re-arrange the integrals in dS; and dS, in order to have obtain
a flux integral of (0,0,A)).
- Consider a closed surface.

- Split the volume integral into three terms.
- Consider only the term which depends on the z-derivative of A,.

- Repeat the same for the terms which depend on the x-derivative of A _and on the y-
derivative of A,

- Express dxdy in order to obtain dS, and dS,,.

- Remove the z-derivative by solving the integral in dz.
What will remain is just the integral in dxdy.

- Divide the surface in two parts, an upper surface and a lower surface and consider an
infinitesimal surface element dS, on the upper surface.

- Write the expression that relates dxdy to dS; and dS,.



THE GAUSS’s THEOREM

PROOF

What if we consider a more complicated volume?

\

v

We divide the volume V
in smaller and “simpler” volumes

V2
V=V, +V,+..= >V,

| J [ divadv = Zvﬂ divAdV =
Zj_’A.dsszjA-ds

isi




PHYSICAL INTERPRETATION

Suppose that V(T) is the velocity field of a gas

Let’s apply the Gauss’ theorem to a volume V of the gas

‘ j j j div(v)dV
N\

This term is the volume per second [m3/s]
that flows out (in) from the closed surface S

If there are no sinks and no sources,

then no gas flows in S

and no gas flows out fromS.

This implies that the flow HV-dS is zero.
Therefore,div(v) =0 S

div(V) =0 = No sink and no source
div(v) <0 = flux is destroyed
and there is a sink

div(V) >0 = flux is created
and there is a source



TARGET PROBLEM

Magnetic monopoles do not exist in nature.
What this implies, in terms of the magnetic field?

Magnetic monopoles do not exists = the flux of B is zero

Let’s apply the Gauss’s theorem to the magnetic field:

. Exercise: apply the Gauss’s theorem
i _ - 0 l One of the four
| to the Guass’s law: ”E-dS S S Maxwell’s
I f equations




WHICH STATEMENT 1S WRONG?

1- The divergence of a vector field is a scalar (yellow)
2- The divergence is related to a measurement of the flux (red)
3- The Gauss’ theorem translates a surface integral

Into a volume integral (green)

4- The Gauss’ theorem can be applied also to a non closed surface (blue)
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VEKTORANALYS

CURL (ROTATIONEN)

and

STOKES’s THEOREM



TARGET PROBLEM

« The current | is flowing in a conductor

» How to calculate the magnetic field?

We need:
» Definition of the “curl” (or rotor) of a vector field
rotA
» The Stokes’ theorem
fﬂ-dr :Hrotﬂ-ds_
L S

*A law that relates the current with the magnetic field:

the fourth Maxwell’s equation (with static electric field): rotB = 7

(see “Teoretisk elektroteknik™)
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THE CURL (ROTATIONEN) rotA

DEFINITION (in cartesian coordinate)

e, e &

X y z

o o 0| (oA A 0A oA OA oA
oy oz 8z oOX  oOX oy

rotA=

rot stands for “rotation”
In fact, the curl is a measure of how much the direction of a vector field

changes in space, i.e. how much the field “rotates”.

In every point of the space, rotA is a vector whose length and direction
characterize the rotation of the field A . B

The direction is the axis of rotation of A -

The magnitude is the magnitude of rotation of A

12



THE CURL TrotA

P T
EXAMPLE 18f 7 7 T T TIIINNN
X L7700 T T s NN
— _ i S e S S N )
A(X,Y,2) =(y,—X,0) AR T R ENNNNNNNN
Dﬁhffffff//ffi_ﬁh\‘\‘\&&\uk.}
F ;.F.?‘.-'r L A Sy .I. .I. .I!l ,!..!v
T =7 A T

iExercise:calculatethecurlof A Y gttt v R I::;":fjii
________________________________________ .E::Il"ii""“‘;'f:x;,rigiﬁ
asl lI.l'.l|'-. L T SR S S '!. I'!. '{ III!,_
S AT T W W N SRR E
_1;““\\\\KRMH“*_.J,__,,‘,;,IK},X!_
k\:\\\\‘xkha ﬁﬁﬁﬁﬁ f.,-’;-’pfﬁfgf;}},f

-1-5K\K\R\EKHHMEHP‘_~‘#K;££
-1 5 2

the direction is the axis of rotation, i.e. perpendicular to

the plane of the figure
The sign (negative, in this case) is determined by the right-hand rule

Magnitude: the amount of rotation
In this example, it is constant and independent of the position, i.e.

the amount of rotation is the same at any point.

Direction:
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THE CURL rotA

PHYSICAL INTERPRETATION

Consider the rotation of a rigid body
around the z-axis

The coordinates of a point P on the body
located at the distance a from the z-axis
and at z=z, changes in time:

X(t) = acos wt
y(t) = asin wt
Z=1,

The velocity of the point P is:
v, (t) = —awsin ot = —wy(t)
v, (t) = awcos ot = wXx(t) =V =(-wy, wX,0)
v,=0

Therefore rotV =(0,0, 2w)

_ 1 _
@ =—rotv
2
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THE STOKES’ THEOREM

fﬂ-dF:HrothS_
L S

where A is a vector field, L is a closed curve and

S is a surface whose boundary is defined by L.
A must be continuously differentiable on S

3 /

15



THE STOKES’ THEOREM
PROOF , 4

Five steps:

1. We divide S in “many” “smaller”

(infinitesimal) Surfaces:
S=>§
i

2. We project S' on:

the xy-plane S|
the yz-plane S',
the xz-plane S,

3 4

3. We prove the Stokes' theorem on S',.
(the only difficult part)

4. We add the results for the projections together
and we obtain the Stokes' theorem on S

5. We add the results for S' together
and we obtain the Stokes' theorem on S

Si

16



»

THE STOKES’ THEOREM z

e,
PROOF
Let's consider the plane surface S,
located in the xy-plane (i.e. z=constant=z,) _
with boundary defined by the curve L, -

Let’s calculate f A-dr
LI

fo, Aedr =f, ACY. 20 A G 2)dy + A, (0 3, 20)e2

z
e ~N ~

Term 1 Term 2 Term 3

Term 3 =0 (z=constant! = dz=0)

Term 1 y

b Ay, z)d=f A (XY, 7,)dx=

Ll 2

L A (XY, zo)dx+J'L2 A (X, Y, 2,)dx =
J:J A (X, T(x),z,)dx+ Iba A (X, g(x),z,)dx =




THE STOKES’ THEOREM

PROOF

= 7 A T 00, 2)dx~ [ A (x, 9(x), 2,)dx = [ [A, (%, T (X).2,) = A (x, §(). 2,)]dx =

j'[”x)ap&(xyzo)dxd _ jjg”‘%& dxdy __” 'A&dxdy

g(x)
Therefore we get:

s
Term 1 £-iz A (X,Y,2,)dx = —Ja—ydxdy

In a similar way:
oA
Term 2 iﬂi A (XY, zo)dxzﬁgdxdy
Si

Adding Term 1, Term 2 and Term 3:

. A-dr —H( aA&jolxoly

It is the z-component of rotA !!

18



THE STOKES’ THEOREM

So can rewrite it as:
jﬁu A-dr = [[ (rotA),dxdy = [[ (rotA),§, -dS
Z s, !

A

dxdy =8, -AdS =6 -dS

In a similar way we hav

§ A-dr —H(rotA) é, -ds

ff A-dF = H(rotA)e .dS

Now let's add everything together:

§Adr+§ Adr+§ Adr fAdr

———————————————————

_______________________________________________________
__________________________________

”(rotA) é -dS +H(rotA) .dS +H(rotA) é -dS = ” rotA-dS

19



Rearrange in logic order the steps to prove the Stokes’ theorem

- Consider only the integral in dx and prove thatju A (X, Y, Z,)dx = —H%dxdy
: o

- add together the expressions for the integrals in S', to Siy and S', obtaining: JU RdT:Ij‘rOtﬂ'dS_
Si
- Prove the Stokes’ theorem on S'.:

- Write the line integral of the vector field along the boundary of S, and split the integral
Into three terms.

- Consider a closed path and a surface whose boundary is defined by the closed path.
-Divide the surface in small areas S' and consider the projection of S'on the xy, yz, xz planes

-Repeat the same for the integral in dy and dz

-Prove the Stokes’ theorem on S: add together all the expressions obtained for S
-Rewrite dxdy to obtain|, A-dr = [[(rotA),§, -dS
: x

-Prove the Stokes’ theorem on S':
-Add the three integrals in dx, dy and dz to obtain L K-dfzﬁ(rotﬂ)zdxdy
: )

-Repeat the same procedure for S', and Siy



THE STOKES’ THEOREM
PROOF
§u A-dT:LjrotA-dS

But we are interested in the whole S.
So we add these small contributions

altogether:
Z”rotﬂ-ds_:ﬁrotﬂ dS
— S — _ S

ffﬂ-dfzﬁrotﬂdg
L S

20



TARGET PROBLEM

Now we can calculate the magnetic field B at a
distance a from the conductor.

Ampere’s law rotB = N

Where ] is the current density:

FBdr — [[rot-dS — [ 75 o [[T-05 —sal
L [ S [ S S

Stokes Ampere S —
_ 1 =[]7-dS
' % S

21



THE GREEN FORMULA IN THE PLANE

THEOREM (7.1 in the textbook) _U(—__jd dy § PdX+Qdy)

PROOF
We can start from Stokes’ theorem § K dr = j I’Otz- d§

§K.dT = §(Axdx+ A dy + Azdz) T §(Axdx+ Aydy)\
L
s D= oy - f(ade ad)
J; rotﬂ. d S ”‘( AY 6'6& je € dXdy / Whicfré:sptil;x(;rnedegfzo&mula
=1

eZ
90
0

N

? %)|Q)<CD> —

>> >Q<)|Q) ><('D)

0
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CURL FREE FIELD AND SCALAR POTENTIAL

DEFINITION: A vector field A is “curl free” if rot A=0

Sometimes called ““irrotational”

rot A=0 < has a scalar potential ¢, A= gradg

T H EO R E M (7.5 in the textbook)

PROOF

(1) rot A=0
fﬂ-d?=“rotﬂ-d§=0
L S

If the circulation is zero, then the field is conservative
and has a scalar potential. See theorem 4.5 in the textbook.

(2) A=gradg

rot A =rot grad¢ = rot ((M , o , aqjj -
oX oy 0z

OX

o¢
OX

|

00 0 of

oy oz

oz oy
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SOLENOIDAL FIELD AND VECTOR POTENTIAL

DEFINITION: A vector field B is called solenoidal if divB =0

DEFINITION: The vector field B has a vector potential A if, B = rotA

THEOREM @rnnewwon |B has a vector potential A, B = rotA < divB =0

PROOF
(1)B has a vector potential = B=rotA = divB= div(rotﬂ) =0

(2) divB =0 B ~ B
Let’s try to find a solution A to the equation B = rotA

We start looking for a particular solution A* of this kind:

A =(A(xy.2), AxY,2),0)

24



CURL FREE FIELD AND SCALAR POTENTIAL

PROOF

Assuming B=rot4A we obtain:

oA x z
_E:Bx = Ay(x! y,Z):_L Bx(x’ y’Z)dZ+F(X’ y)
oA * ’
a_A; _B, = A(xy,2)= J'ZO B, (X, y,2)dz+G(X, y)
0 * * z . OB
KA g L [ By F By, 6 g
ox oy % OX OX "% 0y oy |
- 0B, , 9B, B, o [ Brg F_E_g ﬁ—E=B(Xy2)
But divB=0 = ~ y o g j oz ox oy ox oy i

=B,(X,y,2)-B,(X,Y,Z,)
F(x,y)=0

A solution to this equation is: { y
G(X1 y) = Iyo Bz (X’ y’ ZO)dy

z z

'K‘*:(L B, (, y,z)dz—_[yy B,(X,Y,z,)dy, —L B, (x,Y,2)dz, O)

The general solution can be found using B=rotA

rot(A-A")=B-B=0 = A-A'=grady = A=A"+grady

25



WHICH STATEMENT 1S WRONG?

1- The curl of a vector field is a scalar (yellow)

2- The curl is related to the line integral of a field
along a closed surface (red)

3- Stokes’ theorem translates a line integral into a surface integral
(green)

4- The Stokes’ theorem can be applied only to a closed curve
(blue)

26
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