VEKTORANALYS

Kursvecka 3

GAUSS's THEOREM and
 STOKES's THEOREM

Kapitel 6-7
Sidor 51-82

TARGET PROBLEM

Magnetic monopoles do not exist in nature.

- How can we express this information for \bar{E} and \bar{B} using the mathematical formalism?

TARGET PROBLEM

and two closed surfaces, S_{1} and S_{2}
S_{1} does not contain any charge.
It has no sources and no sinks:
no field lines destroyed and no field lines created inside S1

$$
\iint_{S_{1}} \bar{E} \cdot d \bar{S}=0
$$

S_{2} do contain a charge.
It has a sink. Field lines are destroyed inside S2

$$
\begin{aligned}
& \iint_{S_{2}} \bar{E} \cdot d \bar{S} \neq 0 \\
& \int_{S} \bar{E} \cdot d \bar{S}=\frac{Q}{\varepsilon_{0}} \quad \text { Guass's law }
\end{aligned}
$$

(see the $6^{\text {th }}$ week of this course for details or "Teoretisk elektroteknik")

We want find the differential form of the Guass's law.
(i.e. to express the Guass's law without using integrals)

- to introduce the divergence of a vector field $\bar{A}, \operatorname{div} \bar{A}$
- the Gauss's theorem $\iint_{S} \bar{A} \cdot d \bar{S}=\iiint_{V} d i v \bar{A} d V$

THE DIVERGENCE (DIVERGENSEN)

In cartesian coordinates, the divergence of a vector field \bar{A} is:

DEFINITION

$$
\begin{equation*}
\operatorname{div} \bar{A} \equiv \frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z} \tag{1}
\end{equation*}
$$

It is a measure of how much the field diverges (or converges) from (to) a point.

EXAMPLE:

- Assume that \bar{A} is the velocity field of a gas.
- If heated, the gas will expand creating a velocity field that will diverge.
- The divergence of \bar{A} in the heating point will be positive
- If cooled, the gas will contract creating a velocity field that will converge on the cooling position. The divergence will be negative
- The heating position is a source of the velocity field and the cooling position is a sink of the velocity

The divergence is a measurement of sources or sinks

(this will be more clear using the Guass's theorem)

THE GAUSS's THEOREM

$$
\begin{equation*}
\iint_{S} \bar{A} \cdot d \bar{S}=\iiint_{V} d i v \bar{A} d V \tag{2}
\end{equation*}
$$

where \underline{S} is a closed surface that forms the boundary of the volume V and \bar{A} is a continuously differentiable vector field defined on V .

THE GAUSS's THEOREM

PROOF

$$
\begin{aligned}
\iiint_{V} \operatorname{div} \bar{A} d V= & \iiint_{V}\left(\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}\right) d x d y d z= \\
& \iiint_{V} \frac{\partial A_{x}}{\partial x} d x d y d z+\iiint_{V} \frac{\partial A_{y}}{\partial y} d x d y d z+\iiint_{V} \frac{\partial A_{z}}{\partial z} d x d y d z
\end{aligned}
$$

Let's calculate the last term:
$\iiint_{V} \frac{\partial A_{z}}{\partial z} d x d y d z=\iint_{S_{p}} d x d y \int_{f_{1}(x, y)}^{f_{2}(x, y)} \frac{\partial A_{z}}{\partial z} d z=\iint_{S_{p}}\left[A_{z}\left(x, y, f_{2}(x, y)\right)-A_{z}\left(x, y, f_{1}(x, y)\right)\right] d x d y=$ $d x d y$ is the projection on S_{p} of the small element surfaces on $d S_{1}$ and $d S_{2}$. Therefore: $\quad d x d y=-\hat{e}_{z} \cdot \hat{n}_{1} d S_{1}=\hat{e}_{z} \cdot \hat{n}_{2} d S_{2}$

$$
=\iint_{S_{2}} A_{z}\left(x, y, f_{2}(x, y)\right) \hat{e}_{z} \cdot \hat{n}_{2} d S_{2}+\iint_{S_{1}} A_{z}\left(x, y, f_{1}(x, y)\right) \hat{e}_{z} \cdot \hat{n}_{1} d S_{1}=\iint_{S} A_{z} \hat{e}_{z} \cdot \hat{n} d S
$$

Which means: $\quad \iiint_{V} \frac{\partial A_{z}}{\partial z} d V=\iint_{S} A_{z} \hat{e}_{z} \cdot \hat{n} d S$

THE GAUSS's THEOREM

PROOF

In the same way we get:

$$
\begin{align*}
& \iiint_{V} \frac{\partial A_{x}}{\partial x} d V=\iint_{S} A_{x} \hat{e}_{x} \cdot \hat{n} d S \tag{4}\\
& \iiint_{V} \frac{\partial A_{y}}{\partial y} d V=\iint_{S} A_{y} \hat{e}_{y} \cdot \hat{n} d S \tag{5}
\end{align*}
$$

Adding together equations (3), (4) and (5) we finally obtain:

$$
\begin{aligned}
\iiint_{V} \operatorname{div} \bar{A} d V= & \iiint_{V} \frac{\partial A_{x}}{\partial x} d x d y d z+\iiint_{V} \frac{\partial A_{y}}{\partial y} d x d y d z+\iiint_{V} \frac{\partial A_{z}}{\partial z} d x d y d z= \\
& \iint_{S} A_{x} \hat{e}_{x} \cdot \hat{n} d S+\iint_{S} A_{y} \hat{e}_{y} \cdot \hat{n} d S+\iint_{S} A_{z} \hat{e}_{z} \cdot \hat{n} d S=\iint_{S} \bar{A} \cdot d \bar{S}
\end{aligned}
$$

Rearrange in logic order the steps to prove the Gauss's theorem

- Add all the three terms together in order to obtain the flux of \bar{A}.
,- Write down the volume integral of $\operatorname{div} \bar{A}$
- Consider the projection of the surface element on the xy plane, it will be dxdy. The projection will identify a infinitesimal surface element $\left(\mathrm{dS}_{2}\right)$ on the lower surface.
- Re-arrange the integrals in dS_{1} and dS_{2} in order to have obtain a flux integral of $\left(0,0, A_{z}\right)$.
- Consider a closed surface.
- Split the volume integral into three terms.
- Consider only the term which depends on the z-derivative of A_{z}.
- Repeat the same for the terms which depend on the x-derivative of A_{x} and on the y derivative of A_{y}.
- Express dxdy in order to obtain dS_{1} and dS_{2}.
- Remove the z -derivative by solving the integral in dz .

What will remain is just the integral in dxdy.

- Divide the surface in two parts, an upper surface and a lower surface and consider an infinitesimal surface element dS_{1} on the upper surface.
- Write the expression that relates dxdy to dS_{1} and dS_{2}.

THE GAUSS's THEOREM

PROOF

What if we consider a more complicated volume?

We divide the volume V in smaller and "simpler" volumes

$$
\begin{gathered}
V=V_{1}+V_{2}+\ldots=\sum_{i} V_{i} \\
\iiint_{V} \operatorname{div} A d V=\sum_{i} \iiint_{V_{i}} d i v A d V= \\
\sum_{i} \iint_{S_{i}} A \cdot d S=\iint_{S} A \cdot d S
\end{gathered}
$$

PHYSICAL INTERPRETATION

Suppose that $\bar{v}(\bar{r})$ is the velocity field of a gas
Let's apply the Gauss' theorem to a volume V of the gas

This term is the volume per second [$\mathrm{m}^{3} / \mathrm{s}$] that flows out (in) from the closed surface S

If there are no sinks and no sources,
then no gas flows in S
and no gas flows out from S.
This implies that the flow $\iint_{S} \bar{V} \cdot d \bar{S}$ is zero.
Therefore, $d i v(\bar{v})=0$

$\operatorname{div}(\bar{v})=0 \Rightarrow$ No sink and no source
$\operatorname{div}(\bar{v})<0 \Rightarrow$ flux is destroyed and there is a sink
$\operatorname{div}(\bar{v})>0 \Rightarrow$ flux is created and there is a source

TARGET PROBLEM

Magnetic monopoles do not exist in nature. What this implies, in terms of the magnetic field?

Magnetic monopoles do not exists \Rightarrow the flux of \mathbf{B} is zero

Let's apply the Gauss's theorem to the magnetic field:

$$
\text { Gauss } \Longleftrightarrow \iint_{S} \bar{B} \cdot d \bar{S}=\iiint_{V} \operatorname{div} \bar{B} d V
$$

Exercise: apply the Gauss's theorem
to the Guass's law: $\iint \bar{E} \cdot d \bar{S}=\frac{Q}{\varepsilon_{0}}$
One of the four Maxwell's
equations

WHICH STATEMENT IS WRONG?

1- The divergence of a vector field is a scalar (yellow)

2- The divergence is related to a measurement of the flux (red)
3- The Gauss' theorem translates a surface integral into a volume integral (green)

4- The Gauss' theorem can be applied also to a non closed surface (blue)

VEKTORANALYS

CURL (ROTATIONEN)

and
STOKES's THEOREM

TARGET PROBLEM

- The current \bar{I} is flowing in a conductor
- How to calculate the magnetic field?

We need:

- Definition of the "curl" (or rotor) of a vector field

$$
\operatorname{rot} \bar{A}
$$

- The Stokes' theorem

$$
\oint_{L} \bar{A} \cdot d r=\iint_{S} r o t \bar{A} \cdot d \bar{S}
$$

-A law that relates the current with the magnetic field: the fourth Maxwell's equation (with static electric field): $\operatorname{rot} \bar{B}=\mu_{0} \bar{j}$

THE CURL (ROTATIONEN) $\operatorname{rot} \bar{A}$

DEFINITION (in cartesian coordinate)

$$
\operatorname{rot} \bar{A}=\left|\begin{array}{ccc}
\hat{e}_{x} & \hat{e}_{y} & \hat{e}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{x} & A_{y} & A_{z}
\end{array}\right|=\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}, \quad \frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}, \quad \frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right)
$$

rot stands for "rotation"
In fact, the curl is a measure of how much the direction of a vector field changes in space, i.e. how much the field "rotates".

In every point of the space, $\operatorname{rot} \bar{A}$ is a vector whose length and direction characterize the rotation of the field A.

The direction is the axis of rotation of \bar{A} The magnitude is the magnitude of rotation of \bar{A}

THE CURL $\operatorname{rot} \bar{A}$

EXAMPLE

$$
\bar{A}(x, y, z)=(y,-x, 0)
$$

Exercise: calculate the curl of \bar{A}

Direction: the direction is the axis of rotation, i.e. perpendicular to the plane of the figure
The sign (negative, in this case) is determined by the right-hand rule
Magnitude: the amount of rotation
In this example, it is constant and independent of the position, i.e. the amount of rotation is the same at any point.

Consider the rotation of a rigid body around the z-axis

The coordinates of a point P on the body located at the distance a from the z-axis and at $z=z_{0}$ changes in time:

$$
\begin{aligned}
& x(t)=a \cos \omega t \\
& y(t)=a \sin \omega t \\
& z=z_{0}
\end{aligned}
$$

The velocity of the point P is:

$$
\left.\begin{array}{l}
v_{x}(t)=-a \omega \sin \omega t=-\omega y(t) \\
v_{y}(t)=a \omega \cos \omega t=\omega x(t) \\
v_{z}=0
\end{array}\right\} \Rightarrow \bar{v}=(-\omega y, \omega x, 0)
$$

Therefore $\operatorname{rot} \bar{v}=(0,0,2 \omega)$

$$
\bar{\omega}=\frac{1}{2} \operatorname{rot} \bar{v}
$$

THE STOKES' THEOREM

$$
\oint_{L} \bar{A} \cdot d \bar{r}=\iint_{S} r o t \bar{A} \cdot d \bar{S}
$$

where \bar{A} is a vector field, L is a closed curve and S is a surface whose boundary is defined by L. \bar{A} must be continuously differentiable on S

THE STOKES' THEOREM

PROOF

Five steps:

1. We divide S in "many" "smaller" (infinitesimal) surfaces:

$$
S=\sum_{i} S^{i}
$$

2. We project S^{i} on: the xy-plane S_{z}^{i} the yz-plane S_{x}^{i} the xz-plane S_{y}^{i}

3. We prove the Stokes' theorem on S_{z}^{i}, (the only difficult part)
4. We add the results for the projections together and we obtain the Stokes' theorem on S^{i}
5. We add the results for S^{i} together and we obtain the Stokes' theorem on S

THE STOKES' THEOREM

PROOF

Let's consider the plane surface S_{z}^{i} located in the xy-plane (i.e. $z=$ constant $=z_{0}$) with boundary defined by the curve L_{z}^{i}

Let's calculate $\oint_{L_{z}^{i}} \bar{A} \cdot d \bar{r}$
$\oint_{L_{z}^{i}} \bar{A} \cdot d \bar{r}=\underbrace{\oint_{L_{z}^{i}} A_{x}\left(x, y, z_{0}\right) d x}_{\text {Term 1 }} \underbrace{+A_{y}\left(x, y, z_{0}\right) d y}_{\text {Term } 2} \underbrace{+A_{z}\left(x, y, z_{0}\right) d z}_{\text {Term } 3}$

Term $3=0$ ($z=$ constant $!\Rightarrow d z=0)$

Term 1

$$
\begin{aligned}
& \oint_{L_{z}^{\prime}} A_{x}\left(x, y, z_{0}\right) d x=\oint_{L_{1}+L_{2}} A_{x}\left(x, y, z_{0}\right) d x= \\
& \int_{L_{1}} A_{x}\left(x, y, z_{0}\right) d x+\int_{L_{2}} A_{x}\left(x, y, z_{0}\right) d x= \\
& \int_{a}^{b} A_{x}\left(x, f(x), z_{0}\right) d x+\int_{b}^{a} A_{x}\left(x, g(x), z_{0}\right) d x=
\end{aligned}
$$

THE STOKES' THEOREM

PROOF

$$
\begin{aligned}
= & \int_{a}^{b} A_{x}\left(x, f(x), z_{0}\right) d x-\int_{a}^{b} A_{x}\left(x, g(x), z_{0}\right) d x=\int_{a}^{b}\left[A_{x}\left(x, f(x), z_{0}\right)-A_{x}\left(x, g(x), z_{0}\right)\right] d x= \\
& \int_{a}^{b} \int_{g(x)}^{f(x)} \frac{\partial A_{x}\left(x, y, z_{0}\right)}{\partial y} d x d y=-\int_{a}^{b} \int_{f(x)}^{g(x)} \frac{\partial A_{x}}{\partial y} d x d y=-\iint_{S_{z}^{i}} \frac{\partial A_{x}}{\partial y} d x d y
\end{aligned}
$$

Therefore we get:
Term $1 \quad \oint_{L_{z}^{i}} A_{x}\left(x, y, z_{0}\right) d x=-\iint_{S_{z}^{i}} \frac{\partial A_{x}}{\partial y} d x d y$
In a similar way:
Term 2

$$
\oint_{L_{z}^{i}} A_{y}\left(x, y, z_{0}\right) d x=\iint_{S_{z}^{i}} \frac{\partial A_{y}}{\partial x} d x d y
$$

It is the z-component of $\operatorname{rot} \bar{A}!!$
Adding Term 1, Term 2 and Term 3:

$$
\oint_{L_{z}^{i}} \bar{A} \cdot d \bar{r}=\iint_{S_{z}^{i}}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) d x d y
$$

THE STOKES' THEOREM

So can rewrite it as:

$$
\begin{gathered}
\oint_{L_{z}^{i}} \bar{A} \cdot d \bar{r}=\iint_{S_{z}^{i}}(\operatorname{rot} \bar{A})_{z} d x d y=\iint_{S^{i}}(\operatorname{rot} \bar{A})_{z} \hat{e}_{z} \cdot d \bar{S} \\
\overbrace{d x d y=\hat{e}_{z} \cdot \hat{n} d S=\hat{e}_{z} \cdot d \bar{S}}
\end{gathered}
$$

In a similar way we have:
$\oint_{L_{y}^{i}} \bar{A} \cdot d \bar{r}=\iint_{S^{i}}(\operatorname{rot} \bar{A})_{y} \hat{e}_{y} \cdot d \bar{S}$
$\oint_{L_{x}^{i}} \bar{A} \cdot d \bar{r}=\iint_{S^{i}}(\operatorname{rot} \bar{A})_{x} \hat{e}_{x} \cdot d \bar{S}$

Now let's add everything together:
$\oint_{L_{x}^{i}} \bar{A} \cdot d \bar{r}+\oint_{L_{y}^{i}} \bar{A} \cdot d \bar{r}+\oint_{L_{z}^{i}} \bar{A} \cdot d \bar{r}=\oint_{L^{i}} \bar{A} \cdot d \bar{r}$
$\iint_{S^{i}}(\operatorname{rot} \bar{A})_{x} \hat{e}_{x} \cdot d \bar{S}+\iint_{S^{i}}(\operatorname{rot} \bar{A})_{y} \hat{e}_{y} \cdot d \bar{S}+\iint_{S^{i}}(\operatorname{rot} \bar{A})_{z} \hat{e}_{z} \cdot d \bar{S}=\iint_{S^{i}} r \operatorname{rot} \bar{A} \cdot d \bar{S}$

Rearrange in logic order the steps to prove the Stokes' theorem

- Consider only the integral in dx and prove that $\int_{L_{L_{2}^{\prime}}} A_{x}\left(x, y, z_{0}\right) d x=-\iint_{S_{z}^{\prime}} \frac{\partial A_{x}}{\partial y} d x d y$
- add together the expressions for the integrals in S_{x}^{i} to S_{y}^{i} and S_{z}^{i} obtaining: $\int_{L^{i}} \bar{A} \cdot d \bar{r}=\iint_{S^{i}} r o t \bar{A} \cdot d \bar{S}$
- Prove the Stokes' theorem on S_{z}^{i} :
- Write the line integral of the vector field along the boundary of S_{z}^{i} and split the integral into three terms.
- Consider a closed path and a surface whose boundary is defined by the closed path.
-Divide the surface in small areas S^{i} and consider the projection of S^{i} on the $x y, y z, x z$ planes
-Repeat the same for the integral in $d y$ and $d z$
-Prove the Stokes' theorem on S : add together all the expressions obtained for S^{i}
-Rewrite $d x d y$ to obtain $\int_{L_{z}^{\prime}} \bar{A} \cdot d \bar{r}=\iint_{S^{\prime}}(r o t \bar{A})_{z} \hat{e}_{z} \cdot d \bar{S}$
-Prove the Stokes' theorem on S^{i} :
-Add the three integrals in dx, dy and dz to obtain $\int_{L_{z}^{\prime}} \bar{A} \cdot d \bar{r}=\iint_{S_{z}^{\prime}}(r o t \bar{A})_{z} d x d y$
-Repeat the same procedure for S_{x}^{i} and S_{y}^{i}

THE STOKES' THEOREM

PROOF

$$
\oint_{L^{\prime}} \bar{A} \cdot d \bar{r}=\iint_{S^{\prime}} r o t \bar{A} \cdot d \bar{S}
$$

But we are interested in the whole S . So we add these small contributions altogether:

$$
\begin{aligned}
& \underbrace{\text { II }}_{\sum_{i} \int_{S^{i}} \operatorname{rot} \bar{A} \cdot d \bar{S}}=\iint_{S} \operatorname{rot} \bar{A} \cdot d \bar{S} \\
& \overbrace{\sum_{i} \int_{L^{i}} \bar{A} \cdot d \bar{r}}=\int_{L} \bar{A} \cdot d \bar{r}
\end{aligned}
$$

$$
\oint_{L} \bar{A} \cdot d \bar{r}=\iint_{S} r o t \bar{A} \cdot d \bar{S}
$$

TARGET PROBLEM

Now we can calculate the magnetic field \bar{B} at a distance a from the conductor.

Ampere's law $\operatorname{rot} \bar{B}=\mu_{0} \bar{j}$
Where \bar{j} is the current density:

$$
I=\iint_{S} \bar{j} \cdot d \bar{S}
$$

$\oint_{L} \bar{B} \cdot d \bar{r}=\iint_{S} r o t \bar{B} \cdot d \bar{S}=\iint_{\mathcal{S}} \mu_{0} \bar{j} \cdot d \bar{S}=\mu_{0} \iint_{S} \bar{j} \cdot d \bar{S}=\mu_{0} I$

Ampere

THE GREEN FORMULA IN THE PLANE

THEOREM

$$
\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\oint_{L}(P d x+Q d y)
$$

PROOF

We can start from Stokes' theorem

$$
\oint_{L} \bar{A} \cdot d \bar{r}=\iint_{S} \operatorname{rot} \bar{A} \cdot d \bar{S}
$$

$$
\begin{aligned}
& \oint_{L} \bar{A} \cdot d \bar{r}=\oint\left(A_{x} d x+A_{y} d y+A_{z} d z\right)=\oint_{A}\left(A_{x} d x+A_{y} d y\right) \\
& \begin{array}{c}
\text { But we are in a plane, } \\
\text { so we can assume } A=\left(A_{x}, A_{y}, 0\right)
\end{array} \\
& \iint_{S} \operatorname{rot} \bar{A} \cdot d \bar{S}=\iint\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \underbrace{\hat{e}_{z} \cdot \hat{e}_{z}}_{=1} d x d y
\end{aligned}
$$

CURL FREE FIELD AND SCALAR POTENTIAL

DEFINITION: A vector field \bar{A} is "curl free" if $\operatorname{rot} \bar{A}=0$
THEOREM 1.5 in thecextoons)

$$
\operatorname{rot} \bar{A}=0 \Leftrightarrow \text { has a scalar potential } \phi, \bar{A}=\operatorname{grad} \phi
$$

PROOF

(1) $\operatorname{rot} \bar{A}=0$

$$
\oint_{L} \bar{A} \cdot d \bar{r}=\iint_{S} \operatorname{rot} \bar{A} \cdot d \bar{S}=0
$$

If the circulation is zero, then the field is conservative and has a scalar potential. See theorem 4.5 in the textbook.
(2) $\bar{A}=\operatorname{grad} \phi$

$$
\begin{aligned}
& A=\operatorname{grad} \phi \\
& \operatorname{rot} \bar{A}=\operatorname{rot} \operatorname{grad} \phi=\operatorname{rot}\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right)=\left|\begin{array}{ccc}
\hat{e}_{x} & \hat{e}_{y} & \hat{e}_{z} \\
\frac{\partial}{\partial \partial} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} & \frac{\partial \phi}{\partial z}
\end{array}\right|=\left(\frac{\partial}{\partial y} \frac{\partial \phi}{\partial z}-\frac{\partial}{\partial z} \frac{\partial \phi}{\partial y}, \ldots, \ldots\right)=(0,0,0)
\end{aligned}
$$

SOLENOIDAL FIELD AND VECTOR POTENTIAL

DEFINITION: A vector field \bar{B} is called solenoidal if $\operatorname{div} \bar{B}=0$
DEFINITION: The vector field \bar{B} has a vector potential \bar{A} if , $\bar{B}=\operatorname{rot} \bar{A}$

PROOF
(1) \bar{B} has a vector potential $\Rightarrow \bar{B}=\operatorname{rot} \bar{A} \quad \Rightarrow \quad \operatorname{div} \bar{B}=\operatorname{div}(\operatorname{rot} \bar{A})=0$
(2) $\operatorname{div} \bar{B}=0$

Let's try to find a solution \bar{A} to the equation $\bar{B}=\operatorname{rot} \bar{A}$
We start looking for a particular solution A^{*} of this kind:

$$
\bar{A}^{*}=\left(A_{x}^{*}(x, y, z), A_{y}^{*}(x, y, z), 0\right)
$$

CURL FREE FIELD AND SCALAR POTENTIAL

PROOF

Assuming $\bar{B}=\operatorname{rot} \bar{A}$ we obtain:

$$
\begin{array}{lll}
-\frac{\partial A_{y}^{*}}{\partial z}=B_{x} & \Rightarrow & A_{y}^{*}(x, y, z)=-\int_{z_{0}}^{z} B_{x}(x, y, z) d z+F(x, y) \\
\frac{\partial A_{x}^{*}}{\partial z}=B_{y} & \Rightarrow & A_{x}^{*}(x, y, z)=\int_{z_{0}}^{z} B_{y}(x, y, z) d z+G(x, y) \\
\frac{\partial A_{y}^{*}}{\partial x}-\frac{\partial A_{x}^{*}}{\partial y}=B_{z} & \Rightarrow & -\int_{z_{0}}^{z} \frac{\partial B_{x}}{\partial x} d z+\frac{\partial F}{\partial x}-\int_{z_{0}}^{z} \frac{\partial B_{y}}{\partial y} d z-\frac{\partial G}{\partial y}=B_{z} \\
\downarrow
\end{array}
$$

But $\operatorname{div} \bar{B}=0 \Rightarrow \frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}=-\frac{\partial B_{z}}{\partial z} \longrightarrow \underbrace{\int_{z_{0}}^{z} \frac{\partial B_{z}}{\partial z} d z+\frac{\partial F}{\partial x}-\frac{\partial G}{\partial y}=B_{z} \Rightarrow \frac{\partial F}{\partial x}-\frac{\partial G}{\partial y}=B_{z}\left(x, y, z_{0}\right), ~\left(\frac{1}{2}\right)}_{=B_{z}(x, y, z)-B_{z}\left(x, y, z_{0}\right)}$
A solution to this equation is: $\left\{\begin{array}{l}F(x, y)=0 \\ G(x, y)=-\int_{y_{0}}^{y} B_{z}\left(x, y, z_{0}\right) d y\end{array}\right.$

$$
\bar{A}^{*}=\left(\int_{z_{0}}^{z} B_{y}(x, y, z) d z-\int_{y_{0}}^{y} B_{z}\left(x, y, z_{0}\right) d y, \quad-\int_{z_{0}}^{z} B_{x}(x, y, z) d z, \quad 0\right)
$$

The general solution can be found using $\quad \bar{B}=\operatorname{rot} \bar{A}$:

$$
\operatorname{rot}\left(\bar{A}-\bar{A}^{*}\right)=\bar{B}-\bar{B}=0 \quad \Rightarrow \quad \bar{A}-\bar{A}^{*}=\operatorname{grad} \psi \quad \Rightarrow \quad \bar{A}=\bar{A}^{*}+\operatorname{grad} \psi
$$

WHICH STATEMENT IS WRONG?

1- The curl of a vector field is a scalar (yellow)

2- The curl is related to the line integral of a field along a closed surface (red)

3- Stokes' theorem translates a line integral into a surface integral (green)

4- The Stokes' theorem can be applied only to a closed curve (blue)

